A relaxation scheme for conservation laws with a discontinuous coefficient
نویسندگان
چکیده
We study a relaxation scheme of the Jin and Xin type for conservation laws with a flux function that depends discontinuously on the spatial location through a coefficient k(x). If k ∈ BV , we show that the relaxation scheme produces a sequence of approximate solutions that converge to a weak solution. The Murat-Tartar compensated compactness method is used to establish convergence. We present numerical experiments with the relaxation scheme, and comparisons are made with a front tracking scheme based on an exact 2× 2 Riemann solver.
منابع مشابه
Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes
Flow of two phases in a heterogeneous porous medium is modeled by a scalar conservation law with a discontinuous coefficient. As solutions of conservation laws with discontinuous coefficients depend explicitly on the underlying small scale effects, we consider a model where the relevant small scale effect is dynamic capillary pressure. We prove that the limit of vanishing dynamic capillary pres...
متن کاملStable numerical methods for conservation laws with discontinuous flux function
We develop numerical methods for solving nonlinear equations of conservation laws with flux function that depends on discontinuous coefficients. Using a relaxation approximation, the nonlinear equation is transformed to a semilinear diagonalizable problem with linear characteristic variables. Eulerian and Lagrangian methods are used for the advection stage while an implicit–explicit scheme solv...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملA new total variation diminishing implicit nonstandard finite difference scheme for conservation laws
In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...
متن کاملA BGK approximation to scalar conservation laws with discontinuous flux
We study the BGK approximation to first-order scalar conservation laws with a flux which is discontinuous in the space variable. We show that the Cauchy Problem for the BGK approximation is well-posed and that, as the relaxation parameter tends to 0, it converges to the (entropy) solution of the limit problem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 73 شماره
صفحات -
تاریخ انتشار 2004